desmos 使用手冊

Desmos 讓您輕鬆描繪各種函數、參數式圖形,呈現數據點、計算方程 式、探索各種變換,還有許多其他功能!如果您讀完此手冊後仍然有疑 問,歡迎寫信到: calculator@desmos.com。

開始使用 Desmos	1
表格	2
變數與數值滑桿	3
繪圖區設定	5
支援的數學式	6
支援的函數	8
快速鍵	9

羅驥鏵

畫圖

歡迎使用 Desmos!如果您要畫函數或方程式圖形,請將您的數學式輸入左邊的空格中。在輸入的過程 中,函數或方程式圖形會馬上顯現在右側的繪圖區。

你可以將現有的數學式轉成表格,也可以新增一個空白表格。如果數學式中有數值滑桿的話,轉為表格後,數值滑桿依然會正常運作。

你可以直接輸入直線方程式來畫直線,例如: y = 2x + 3。如果想要動態展現方程式,你可以在方程式 中使用變數,例如: y = mx + b。當你輸入變數的時候,系統會提示你要不要產生「數值滑桿」,利用 這些數值滑桿,你可以動態改變這些數值,這時直線的位置也會跟著改變。當然,你也可以自行輸入變 數,例如輸入: m=2 或 b=3 之類的變數,這時系統也會自動產生數值滑桿。

只要你的數學式中有自由變數,系統就 會提示你要不要產生數值滑桿。

你可以使用相同的變數來控制不同的圖形。例如:

變數 C 可以讓圖中的兩條直線一起上升或下降。

當你改變 m 的時候,圖中的兩條直線會永遠保 持垂直。

如果要調整數值滑桿的範圍,請在它的最大值或最小值的地方點一下,並輸入你要設定的數值,然後在其他地方點一下即可。

	y = mx + b		
2	m = 1		
\bigcirc	-10 ≤ <i>m</i> ≤ 10 增量		

如果要畫一個動點,請輸入至少含 有一個變數的座標,例如:(α,0)。 當你在繪圖區拖曳這個點的時候, 相對應的變數也會同步改變。你可 以利用這樣的特性,讓你的圖檔更 具互動性。例如,你可以輸入直線 v-b=m(x-α), 同時輸入動點座標(

y-b=m(x-a),同時輸入動點座標 (a,b),這時你可以試著拖曳此動點,該直線也會隨著改變位置。(別 忘了,將 a, b 設為數值滑桿喔!)

儲存檔案

你必須要登入才能儲存新檔或開啟舊檔。

請按檔名旁邊的 💾 圖示存檔。

如果要開啟舊檔,請按 📃 圖示。

分享圖檔

如果要分享圖檔,請按 🖸 圖示。

座標設定

你可以設定要使用直角座標或極座標,切換是否要顯示座標、格線、座標軸。

使用「投影模式」會讓圖形與座標軸變粗一點、數字變大一點,適 合用於使用投影機時。

視窗大小

可調整要顯示的座標範圍。

角度設定

可設定使用「角度」或「弧度」。座標軸可設定為使用 Π 為單位。

R ? ۲ 繪圖區 直角座標 極坐標 ☑ 顯示標籤 ☑ 顯示格線 投影模式 ☑ 顯示坐標軸 視窗範圍 < *x* < 10 -10 < *y* < 7.423 -7.423 √刻度等長 角度設定 角度 弧度 **x** 軸標籤: 1, 2, 3 π, 2π, 3π **y** 軸標籤: 1, 2, 3 π, 2π, 3π

視窗縮放

你可以使用右上角的縮放圖示來放大或縮小整個座標平面。如果要回到預定的大小,請按 中間的「家」圖示。

其他縮放法

使用平板時,可以利用兩隻手指來進行縮放。使用電腦時,可以利用滑鼠滾輪進行縮放。 按住繪圖區並拖曳,可以移動整個繪圖區。

支援的數學式

圖形分類	範例	說明	
一般方程式	y=2x+1		
用 y 計算 x	x=√(1-y²)		-1 0
不等式	y>log(x) x≤2y+3	不含等號的不等式會 以虛線表示	2 1 0 1 2
極式	r=sin(5θ)	含 r 與 θ 的數學式會 自動視為極方程式	
分段定義	y= x {x<0} x=sin(y){-π <y<π}< td=""><td>使用條件式來限制函 數的定義域或值域</td><td></td></y<π}<>	使用條件式來限制函 數的定義域或值域	

圖形分類	範例	說明	
定點	(1,0)	點座標必須用小括號括 起來	2
點集	(1,1), (2,2), (3,3)	要畫一個以上的點時, 請用逗號隔開	
動點	(a,b)	x 座標或 y 座標使用變 數	2
參數式	(sin(2t), cos(3t))	使用變數 t 當座標的點, 會自動視為參數式(變數 t 不需事先定義)	-1
隱函數	$x^{2}+y^{2}=1$ $y^{2}+sin(x)y+x=2$	只要不是太複雜的隱函 數也可以畫出來	-2 0 2

指對數函數	雙曲函數	微積分
exp(x)	sinh(x)	d/dx
ln(x)	cosh(x)	Σ
log(x)	tanh(x)	П
log _n (x)	sech(x)	自定函數
x ⁿ	csch(x)	你可以定義自己的函數,函數 名稱可以用任何字母(除了 x,
	coth(x)	y, r, t, e 之外)。自定函數可 以用於其他地方,比方說你有
三角函數		函數 f(x)=x^2,這時你可以輸 入 y=f(x+1),
sin(x)	機率統計	這相當於輸入 v=(x+1)^2 —
cos(x)	ceil(x)	樣,也就是將原 來的抛物線向左
tan(x)	floor(x)	移。
sec(x)	round(x)	你甚至可以設定兩個變數以上的
csc(x)	abs(x)	函數,例如:g(a,b)=sin(a-b) 。雖然繪圖區無法畫此函數,
cot(x)	min(a,b)	但你還是可以使
反三角函數	max(a,b)	其他函數,例 如: v=q(x.2):
arcsin(x)	lcm(a,b)	
arccos(x)	gcd(a,b)	
arctan(x)	nCr(n,r)	
arcsec(x)	nPr(n,r)	
arcscs(x)	! (factorial)	

desmos

arccot(x)

2

開啓舊檔: ctrl +o

存檔: ctrl + s

另存新檔或改名: crtl + shift + s

復原: crtl +z

重做: ctrl + y

新增數學式:按「Enter」

游標向上/下: 按↑與↓方向鍵

游標向左/右: 按 ← 與 → 方向鍵

加入文字:按雙引號「"」鍵

刪除數學式:按「Del」鍵或數學式右側的「×」符號

符號

- ∑: 輸入「sum」
- π: 輸入「pi」
- θ: 輸入「theta」
- √: 輸入「sqrt」
- □: 輸入「prod」

Oesmos