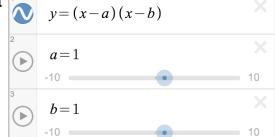
In this exploration, you will discover the relationship between the factors for a quadratic expression and the graph of the quadratic function.

1. Factor the following expression: $x^2 + x - 2$

3. Explain how the factors from the expression above compare to the original polynomial.

- 3. Go to desmos and graph the following function/equation: $y = x^2 + x 2$
 - A. On the left part of the screen, type in the expression $y = x^2 + x 2$



B. Click on the plus sign and enter the two binomial factors you found when factoring $y = x^2 + x - 2$

$$y = ($$
 $)($

Compare the 2 graphs and where the graphs intersect the x-axis. How do the factors for the polynomial compare with where the graph crosses the x-axis?

4. Does your hypothesis hold true for all values for that you replace in your binomial factors?

- A. Delete your previous expressions and enter the following expression illustrated to the right:
- B. When asked if you would like to make a, b or all sliders choose all.
- C. Click on the points for "a" and "b" and slide the values. How do the values for "a" and "b" compare with the points where the graph crossed the x-axis?

5. What would the values for "a" and "b" have to be in order to have the graph only touch the x-axis in only one place along the axis?

6. What type of polynomial would be created if the 2 factors were multiplied together

Zeros of a Function:

Zero Product Rule: {used when solving quadratic/polynomial equations}

Algebra 1 Lab: Quadratic Equations and Corresponding Graphs